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Abstract. We propose a novel method to review the satisifiability of (K ∧ φ),
where K is a two conjunctive form and φ is a three conjunctive form, both
formulas defined on the same set of variables. We extend our method to solve the
incremental satisfiablity problem (ISAT), and we present different cases where
ISAT can be solved in polynomial time. Our proposal is adequate to solve the 2-
ISAT problem, and our method allows to recognize tractable instances of 2-ISAT.
We illustrate a practical application of our algorithm in the area of recognizing
faults on combinatorial circuits.

Keywords. Satisfiability problem, incremental satisfiability problem, 2-SAT, propo-
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1 Introduction

A central issue in determining these frontiers has centered in the satisfiability problem
(SAT) in the propositional calculus [3]. The case 2-SAT, that determines the satisfia-
bility of propositional two Conjunctive Normal Forms (2-CF), is an important tractable
case of SAT.

SAT is an important theoretical problem since it was proved as the first problem
in the NP-complete complexity class. Despite the theoretical hardness of SAT, current
state-of-the-art decision procedures for SAT, known as SAT solvers, have become sur-
prisingly efficient. Subsequently these solvers have found many industrial applications.
Such applications are rarely limited to solving just one decision problem, instead, a
single application will typically solve a sequence of related problems. Modern SAT
solvers handle such problem sequences as an instance of the incremental satisfiability
problem (ISAT) [10].

We will consider the ISAT problem as a dynamic incremental set of clauses: F0, F1,
. . . , Fn, starting with an initial satisfiable formula F0. Each Fi results from a change
in the preceding one Fi−1 imposed by the ‘outside world’. Although the change can
be a restriction (add clauses) or a relaxation (remove clauses), we will focus in the
restriction case, so we consider adding a new set of clauses to Fi−1 in order to form Fi.
The process of adding new clauses is finished when Fi is unsatisfiable or there are no
more clauses to be added.
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One idea used on ISAT methods, is to preserve the structures formed when previous
formulas were processed, allowing the recognition of common subformulas that they
were previously considered. More importantly, it allows the solver to reuse information
across several related consecutive problems. The resulting performance improvements
make ISAT a crucial feature for modern SAT solvers in real-life applications [10].

ISAT is of interest to a large variety of applications that need to be processed in
an evolutive environment [3]. This could be the case of applications such as reactive
scheduling and planning, dynamic combinatorial optimization, reviewing faults in com-
binatorial circuits, dynamic constraint satisfaction and machine learning in a dynamic
environment [9].

In [3], we designed an algortihm for reviewing Sat(K ∧ φ),K and φ being CF’s.
In this work, we adapt our initial algorithm considering that K is a 2-CF and φ a 3-CF.
We present here, a study about the threshold for the 2-ISAT problem that could be
relevant to understand the border between P and NP complexity classes. We also show
the practical relevance of our algorithm in the area of automatic test pattern generation
(ATPG) systems that consists in differentiating defective components from defect-free
components.

2 Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal is either a variable xi
or a negated variable xi. As usual, for each x ∈ X , x0 = ¬x = x and x1 = x.

A clause is a disjunction of different and non-complementary literals. Notice that
we discard the case of tautological clauses. For k ∈ IN , a k-clause is a clause consisting
of exactly k literals, and a (≤ k)-clause is a clause with at most k literals.

A conjunctive normal form (CNF, or just CF) F is a conjunction of non-tautological
clauses. We say that F is a monotone positive CF if all of its variables appear in
unnegated form. A k-CF is a CF containing only k-clauses. (≤ k)-CF denotes a CF
containing clauses with at most k literals.

A variable x ∈ X appears in a formula F if either x or ¬x is an element of F .
The size of a CF F is defined as the total number of literals appearing in the CF F .
We use υ(X) to represent the variables involved in the object X , where X can be a
literal, a clause, or a CF. For instance, for the clause c = {x1, x2}, υ(c) = {x1, x2}.
Lit(F ) is the set of literals involved in F , i.e. if X = υ(F ), then Lit(F ) = X ∪X =
{x1, x1, ..., xn, xn}. Also, we used ¬Y as the negation operator on the object Y .

An assignment s for F is a function s : υ(F ) → {0, 1}. An assignment s can also
be considered as a set of literals without a complementary pair of literals, e.g., if l ∈ s,
then l 6∈ s, in other words s turns l true and l false or viceversa. Let c be a clause and s
an assignment, c is satisfied by s if and only if c ∩ s 6= ∅. On the other hand, if for all
l ∈ c, l ∈ s, then s falsifies c.

Let F be a CF, F is satisfied by an assignment s if each clause in F is satisfied
by s. F is contradicted by s if any clause in F is falsified by s. A model of F is an
assignment for υ(F ) that satisfies F . A falsifying assignment of F is an assignment
for υ(F ) that contradicts F . If n = |υ(F )|, then there are 2n possible assignments
defined over υ(F ). Let S(F ) be the set of 2n assignments defined over υ(F ). s ` F
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denotes that assignment s is a model of F , while that s 6` F denotes that s is a falsifying
assignment of F .

If F1 ⊂ F is a formula consisting of some clauses from F , and υ(F1) ⊂ υ(F ),
an assignment over υ(F1) is a partial assignment over υ(F ). If n = |υ(F )| and n1 =
|υ(F1)|, any assignment over υ(F1) has 2n−n1 extensions as assignments over υ(F ). If
s has logical values determined for all variables in F then s is a total assignment of F .

The SAT problem consists of determining whether F has a model. SAT(F ) denotes
the set of models of F , then SAT(F ) ⊆ S(F ). The set FAL(F ) = S(F ) \ SAT (F )
consists of the assignments from S(F ) that falsify F . Clearly, for any propositional
formula F , S(F ) = SAT (F ) ∪ Fals(F ).

3 Reducing Conjunctive Normal Forms

Let K be a CF, i.e., K =
∧m

i=1 Ci, where each Ci, i = 1, . . . ,m is a disjunction of
literals. Let us introduce the main problem to be considered here.
Instance: Let K be a 2-CF and φ be a 3-CF, such that υ(φ) ⊆ υ(K).
Problem: To determine SAT(K ∪ φ).

We will present here, an efficient algorithm to solve this problem. But first, we
introduce some common rules used to simplify a conjunctive normal form F , keeping
just the necessary subformulas that determine the satisifiability of F . For example, for
a CF it is common to delete all redundant clauses as: tautological clauses, repeated
clauses and clauses with pure literals.

Subsumed clause Rule: Given two clauses ci and cj of a CF F , if Lit(ci) ⊆
Lit(cj) then cj is subsumed by ci, and cj can be deleted from F , because all satisfying
assignment of cj is a satisfying assignment of ci, that is Sat(cj) ⊆ Sat(ci). Thus, it is
enough just to keep ci (the clause which subsumes) in the CF.

Furthermore, subsumed clause rule can be combined with resolution in order to
simplify φ, as we show in the following lemma.

Lemma 1. Let (x, y) ∈ K and a clause (¬x, y, z) ∈ φ then its resolvent (y, z) is a
binary clause that can be added to K and its father (¬x, y, z) can be deleted from φ.

Proof. We have that (x∨y)∧(¬x∨y∨z) ≡ y∨(x∧(¬x∨z)) ≡ y∨((x∧¬x)∨(x∧z)) ≡
y ∨ (x ∧ z) ≡ (x ∨ y) ∧ (y ∨ z), and if these last two clauses are preserved in K then
the clause (¬x, y, z) can be deleted from φ, because it is subsumed by (y∨ z) ∈ K and
therefore, the set of models of (K ∧ φ) are preserved without changes.

Resolution is also useful in our purpose to move clauses from φ to K. For example,
if φ contains clauses type: (x, y, z) and (¬x, y, z), then they can be deleted from φ and
the clause (y, z) is added to K. The justification of this rule comes from the distributive
property, since (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ≡ (y ∨ z) ∨ (x ∧ ¬x) ≡ (y ∨ z).

On the other hand, other common rules used to simplify formulas have to be adapted
for our purpose.
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Rule of Pure Literal: Let F be a CF, l ∈ Lit(F ) is a pure literal if l appears in F
but l does not appear in F .

If a clause contains a pure literal, that clause can be eliminated from F , keeping the
logical value of F . Because if the literal l is set to True, the clause containing l is also
True, therefore it can be deleted from F . However, this rule has to be applied carefully
for our problem, since in the process of adding new clauses φ to K, the initial pure
literals in K could be not longer pure in K ∪ φ. Therefore, to delete clauses with pure
literals must be applied into a local reach, working in each instance (K ∧ φ). But, if a
new set of clauses φi+1 has to be considered, then all clause with pure literals deleted
from (K ∧ φ) must be returned to φi+1.

It is easy to build Fals(K) since each clause Ci determines a subset of falsifying
assignments of K. For example, Fals(K) =

⋃m
i=1 Fals(Ci). The following lemma

expresses how to form the falsifying set of assignments of a CF.

Lemma 2. LetK =
∧m

i=1 Ci be a CF, thenFals(K) =
⋃m

i=1{σ ∈ S(K) | Fals(Ci) ⊆
σ}

Lemma 3. If a CF K is satisfiable, then ∀K ′ ⊆ K, K ′ is a CF satisfiable.

Proof. If K is satisfiable, then Fals(K) =
⋃

Ci∈K Fals(Ci) ⊂ S(F ). Clearly, if
we discard some clauses from K, forming K ′, then Fals(K ′) =

⋃
Ci∈K′ Fals(Ci)

⊆
⋃

Ci∈K Fals(Ci) ⊂ S(F ). Thus, K ′ is satisfiable.

Corollary 1 If a CF K is unsatisfiable, then ∀ CF K ′ such that K ⊆ K ′, K ′ remains
unsatisfiable.

Proof. An unsatisfiable CFK holds thatFals(K) =
⋃

Ci∈K Fals(Ci) = S(F ). Then,
if we aggregate more clauses to K forming K ′, then Fals(K) =⋃

Ci∈K Fals(Ci) ⊆
⋃

Ci∈K′ Fals(Ci) = S(F ). Thus, K ′ is also unsatisfiable.

4 The Transitive Closure of a 2-CF

The fact that in a 2-CF formula a clause is equivalent to a pair of implications can be
straightforward established as follows: if {x, y} ∈ F then {x, y} is equivalent to both
x → y and y → x. The arrow → has the usual meaning of implication in classical
logic.

Definition 1 Let F be a 2-CF and L its set of literals. The relation →R⊂ L × L is
defined as follows: x→R y if and only if x→ y.

Definition 2 Let F be a 2-CF, a partial assignment s of F is a feasible model for F , if
s does not falsify any clause in F .

We consider now the transitive closure of→R, denoted by ”⇒”. This new relation
⇒ can always be constructed inductively from →R. For any feasible model s of F
where x and y occur in F ; if x⇒ y and x is true in s then it is straightforward to show
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that y is true in s. It is said that y is forced to be true by x. Let T (x) be the set of literals
forced to be true by x, that is T (x) = {x} ∪ {y : x⇒ y}.

It is clear that, if x is a literal occurring in a formula F , and if x̄ ∈ T (x), then x
cannot be set to true in any model of F . Analogously, if x ∈ T (x̄) then x cannot be set
to false in any model of F .

Definition 3 Let F be a 2-CF, for any literal x ∈ F , it is said that T (x) is inconsistent
if x ∈ T (x) or ⊥ ∈ T (x), otherwise T (x) is said to be consistent.

Unit clauses in 2-CF can be expressed as implications, that is, if F has unit clauses
{u} then u ≡ u ∨ ⊥, hence ⊥ ∈ T (u). As a consequence, in formulas with unit
clause {u} follows that T (u) is inconsistent. Let F be a 2-CF with n variables and m
clauses, it has been shown that for any literal x ∈ F , T (x) and T (x) are computed
in polynomial time over |F |, in fact, for all l ∈ Lit(F ), T (l) is computed with time
complexity O(n ·m) [5].

For any literal x in a 2-CF, the sets T (x) and T (x) allow to determine which
variables have a fixed logical values in every model of F , that is to say, the variables
that are true in every model of F and the variables that are false in every model of F .
The properties of the sets T (x) and T (x) will be established as a lemma.

Lemma 4. Let F be a 2-CF and x a variable in F .

1. If T (x) is inconsistent and T (x) is consistent then x is true in every model of F .
2. If T (x) is inconsistent and T (x) is consistent then x is true in every model of F .
3. If both T (x) and T (x) are inconsistent then F does not have models and F is

unsatisifiable.
4. If both T (x) and T (x) are consistent then x does not have a fixed valued in each

model of F .

Proof. 1. Suppose x is false in a model of F , so x should be true in that model of F .
However, T (x) is inconsistent, so x ⇒ x and x cannot be true in the model of F
contradicting the assumption. Hence, any model of F has to assign false to x and
true to x. The other cases are proved similarly.

From properties (1) and (2) of lemma 4 we formulate the following definition

Definition 4 A base for the set of models of a 2-CF F , denoted as S(F ), is a partial
assignment s of F which consists of the variables with a fixed truth value.

We denote by Transitive Closure(F) to the procedure which computes the sets T (x)
and T (x̄) for each x ∈ υ(F ). The transitive procedure applied on a 2-CF F allows to
build bases for the set of models of F . If a base S(F ) is such that |S(F )| = |υ(F )|,
then each variable of F has a fixed truth value in every model of F , so there is just one
model.

Definition 5 Let F be a 2-CF and x a literal of F . The reduction of F by x, also called
forcing x and denoted by F [x], is the formula generated from F by the following two
rules
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a) removing from F the clauses containing x (subsumption rule),
b) removing x from the remaining clauses (unit resolution rule).

A reduction is also sometimes called a unit reduction. The reduction by a set of
literals can be inductively established as follows: let s = {l1, l2, . . . , lk} be a partial
assignment of υ(F ). The reduction of F by s is defined by successively applying
definition 5 for li, i = 1, . . . , k. That is reduction of F by l1 gives the formula F [l1],
following a reduction of F [l1] by l2, giving as a result the formula F [l1, l2] and so on.
The process continues until F [s] = F [l1, ..., lk] is reached. In case that s = ∅ then
F [s] = F .

Example 1. Let F = {{x1, x2}, {x1, x2}, {x1, x3}, {x1, x3}, {x2, x4}, {x2, x4}, {x2,
x5}, {x3, x5}}. If s = {x2, x3}, F [x2] = {{x1}, {x1, x3}, {x1, x3}, {x4}, {x4}, {x3,
x5}}, and F [s] = {{x1}, {x1}, {x1}, {x4}, {x4}, {x5}}.

Let F be a 2-CF formula and s a partial assignment of F . If a pair of contradictory
unitary clauses is obtained while F [s] is being computed, then F is falsified by the
assignment s. Furthermore, during the computation of F [s], new unitary clauses can
be generated. Thus, the partial assignment s is extended by adding the already found
unitary clauses, that is, s = s ∪ {u} where {u} is a unitary clause. So, F [s] can be
again reduced using the new unitary clauses. The above iterative process is generalized,
and we call to this iterative process Unit Propagation(F, s). For simplicity, we will
abbreviate Unit Propagation(F, s) as UP (F, s).

As a result of applying UP (F, s), we obtain a new assignment s′ that extend to s,
and a new subformula F ′ formed by the clauses from F that are not satisfied by s′. We
denote (F ′, s′) = UP (F, s) to the pair resulting of the application of Unit Propagation
on F by the assignment s. Notice that if s falsifies F then s′ could have complementary
literals and F ′ contains the null clause. And when s satisfies F , then F ′ is empty.

5 Incremental Satisfiability Problem

The incremental satisfiability problem (ISAT) involves checking whether satisfiability
is maintained when new clauses are added to an initial satisfiable knowledge base K.
ISAT is considered as a generalization of SAT since it allows changes of the input
formula over time. Also, it can be considered as a prototypical Dynamic Constraint
Satisfaction Problem (DCSP) [7].

Different methods have been applied to solve ISAT, among them, variations of the
branch and bounds procedure, denoted as IDPL methods, which are usually based
in the classical Davis-Putnam-Loveland (DPL) method. In a IDPL procedure, when
adding new clauses, the procedure maintains the search tree generated previously for
the set of clauses K. IDPL performs substantially faster than DPL for a large set of
SAT problems [6]. Rather than solving related formulas separately, modern solvers
attempt to solve them incrementally since many practical applications require solving a
sequence of related SAT formulas [2,4].

Assuming an initial KB K, and a new CF φ to be added, let us consider some cases
where SAT(K ∧ φ) can be determined efficiently.
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1. If K and φ are 2-CF’s then (K ∧φ) is a 2-CF that is the input of ISAT. In this case,
2-ISAT is solvable in linear-time by applying the well known algorithms for 2-SAT
[5,1]

2. For monotone formulas, ISAT keeps satisfiable formulas. If each variable maintains
a unique sign in both K and φ then (K ∧ φ) is always satisfiable.

3. If φ consists of one clause and we have the searching graph of K, we only have
to review which consistent path of the graph falsifies φ, and this can be done in
linear time on the number of literals of K and the number of consistent paths of the
searching graph.

It is clear that a set of changes over a satisfiable KBK in 2-CF could changeK into
a general CF, in which case, K will turn into a general CF K ′, K ⊂ K ′, where the SAT
problem on K ′ is a classic NP-complete problem.

From now on, let us consider that K is a 2-CF and φ is a 3-CF, both of them do
not match the previous cases presented in this section. Therefore, we consider that φ
consists of clauses that effectively decrease the set of models of K.

First, we show the relevance of our method to determine SAT(K∧φ) for applying it
in a practical area. We consider automatic test pattern generation (ATPG) systems that
consist in differentiating defective components from defect-free components. We start
considering the method proposed by Larrabee [8]. Her method is based in the formation
of cojunctive forms to express test patterns for single stuck at faults in combinatorial
circuits.

For example, all binary and unary gates are expressed via CF’s. Considering a logic
gate with two inputs X,Y and output Z, basic gates are expressed as: And Gate: (Z +
X)(Z + Y )(Z + X + Y ), Or Gate: (X + Z)(Y + Z)(X + Y + Z). The Not Gate:
(X+Y )(Y +X), and the Xor Gate is (X+Y +Z)(X+Y +Z)(X+Y +Z)(X+Y +Z).

In Larrabee’s method, a CF is used to generate test patterns on combinatorial cir-
cuits, considering the construction of such Boolean formula with true and false outputs
of the circuit. In order to generate a test pattern for a single fault on the circuit, a CF
that detects the fault in the circuit is extracted, and then, is needed to apply a procedure
for reviewing the satisfiability of the formed formula.

The most important steps of the Larrabee’s system are illustrated with the combina-
tional circuit that appears in Figure 1:

1. A transformation process is applied on each gate forming the circuit and trans-
forming it into a CF, according to the patterns described previously. For example,
the first circuit in Figure 1 is equivalent to the CF: {{C,E}, {C,E}
, {X,D}, {X,E}, {X,D,E}, {D,A}, {D,B}, {D,A,B}}.

2. It is needed to represent a faulted version of the initial circuit by making a copy of
the original circuit, renaming variables and inserting two new nodes representing
the presumed disrupted connection in the faulted circuit. In our example, we con-
sider D′ as a disrupted connection with a new output, denoted by X ′, on the final
gate. In this case, D represents stuck-at 1, D′ represents a faulted behavior at the
fault site, andD is the node representing the correct behavior at the fault site. Then,
we obtain the following CF: {{C,E}, {C,E} {X ′, D}, {X ′, E},
{X ′, D,E}, {D,A}, {D,B}, {D,A,B}, {D′}}.
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3. The two circuits(faulted and unfaulted) are joined by a XOR-gate to represent that
only one of them will be satisfiable. F = {{X ′, D′}, {X ′, E}, {D′},
{X ′, D′, E}, {C,E}, {C,E} {Z,Z ′}, {Z,Z ′}, {X,D}, {X,E}{D,B}, {D,A},
{X,D,E}, {D,A,B}, {X,X ′, Z}, {X,X ′, Z}, {X,X ′, Z ′}, {X,X ′, Z ′}}.

4. Our procedure requires that υ(φ) ⊆ υ(K), so we can redefine variables in φ that
initially they do not appear inK, using binary clauses. In our example, Z ′ = Z and
then the clauses {Z,Z ′} and {Z,Z ′} guarantee that only one of the two variablesZ
orZ ′ will be valid into the XOR gate: {{X,X ′, Z}, {X,X ′, Z}, {X,X ′, Z ′}, {X,X ′, Z ′}}.

5. At the end of the Larrabee’s method, a final CF is obtained F = {{X ′, D′},
{X ′, E}, {X ′, D′, E}, {D′}, {C,E}, {C,E} {Z,Z ′}, {Z,Z ′}, {X,D}, {X,E},
{X,D,E}, {D,A}, {D,B}, {D,A,B}, {X,X ′, Z}, {X,X ′, Z}, {X,X ′, Z ′},
{X,X ′, Z ′}}

A

B
D

C
E

X

A

B

D

C
E

D’

X’

(D+A)*
(D+B)*
(D+A+B)

(C+E)*
(C+E)

(X+D)*
(X+E)*
(X+D+E)

(D+A)*
(D+B)*
(D+A+B)

(C+E)*
(C+E)

(X’+D)*
(X’+E)*
(X′+D’+E)

D

D′

Fig. 1. Testing a combinatorial Circuit.

Now, we describe how our proposal works to review the satisifiability of (K ∧ φ),
being K a 2-CF and φ a 3-CF. We illustrate our proposal for considering the final CF
obtained via the Larrabee’s method.

Let S = S(K) be the base for the initial 2-CF K. First, we apply the simplification
rules described in section 3, in order to reduce φ and extend K, keeping the logical
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value of (K ∧ φ). After that, we consider (φ, s) = UP (φ, S) because the partial
assignment common to all model of K must remain in any model of φ. Furthermore,
the new binary clauses in φ can be considered to be part of K and they can be deleted
from φ.

Applying the rules to reduce formulas, we obtain the new two formulas:
K = {{X ′, D′}, {X ′, E}, {D′}, {C,E}, {C,E} {Z,Z ′}, {Z,Z ′}, {X,D}, {X,E},
{D,A}, {D,B} and φ = {{X ′, D′, E}, {D,A,B}, {X,X ′, Z}, {X,X ′, Z ′},
{X,X ′, Z ′}}.

When (φ′, S′) = UP (φ, S) is applied, new binary clauses are generated from
clauses of φ. Those clauses are moved to K and deleted from φ. The process of moving
binary clauses from φ to K, obligate us to update the closures and the base of K. Let us
consider K ′ the set of new binary clauses to be added to K, such that υ(K ′) ⊆ υ(K).
∀c = {x, y} ∈ K ′, we consider the pair of implications: ¬x⇒ T (y) and ¬y ⇒ T (x).
Therefore, the original closures for x and y are updated as: T (¬y) = T (¬y) ∪ T (x)
and T (¬x) = T (¬x) ∪ T (y).

Furthermore, ∀T (l) where ¬x ∈ T (l), it updates as T (l) = T (l)∪T (y), and ∀T (l)
where ¬y ∈ T (l), it updates as T (l) = T (l) ∪ T (x). After updating the transitive
closures, the new base for K ∪ K ′ has to be recomputed, and K is updated as: K =
K ∪K ′.

In the case of our example, we have that the base of our system of transitive closures
is: S(F ) = {D′}. By applying the rule of Pure Literal, D′ is deleted from F , then
F [D′] = {{X ′}, {X ′, E}, {C,E}, {C,E} {Z,Z ′}, {Z,Z ′},
{X,D}, {X,E}, {X,D,E}, {D,A}, {D,B}, {D,A,B}, {X,X ′, Z}, {X,X ′, Z},
{X,X ′, Z ′}, {X,X ′, Z ′}}.

As {X ′} is now a unitary clause, then X ′ is added to the base S(F ) = {D′, X ′},
and F [X ′] is computed. F [X ′] = {{C,E}, {C,E} {Z,Z ′}, {Z,Z ′},
{X,D}, {X,E}, {X,D,E}, {D,A}, {D,B}, {D,A,B}, {X,Z}, {X,Z ′}}.

The transitive closures are computed over the new K:
T (A) = {A}, T (A) = {A,D} T (B) = {B}, T (B) = {B,D}
T (C) = {C,E}, T (C) = {C,E,X,Z ′, Z}
T (D) = {D,A,B,X,Z ′, Z}, T (D) = {D}
T (E) = {E,C,X,Z ′, Z}, T (E) = {E,C}
T (X) = {X,Z ′, Z}, T (X) = {X,D,E,Z,C, Z ′}
T (Z) = {Z,Z ′, X,E,C,D}, T (Z) = {Z,Z ′, X}
T (Z ′) = {Z ′, Z,X}, T (Z ′) = {Z ′, Z,X,E,C,D}.
And the last 3-CF is φ = {{X,D,E}, {D,A,B}} .

When (φ′, S′) = UP (φ, S) is applied, then any variable x ∈ υ(S′) does not appear
more in φ′, because if x ∈ S′ and C = {x, y, z} ∈ φ then C is satisfied and C does
not appear more in φ′. Otherwise, if C = {¬x, y, z} ∈ φ then the clause {y, z} is
generated instead of C, and it is added to K because this is a new binary clause. In
whatever case, any variable in S = Base(K ∧ φ) does not appear more in φ′. Notice
that during this step, a new base S′ 6= Base(K) could be generated since S′ is looking
for future feasible assignments for (K ∧ φ).

Our procedure looks afterwards for possible feasible assignments for (K ∪ φ), in
the next way: Let S1 = S ∪ T (x) and S2 = S ∪ T (¬x) which are consistent because

47

Applying an Incremental Satisfiability Algorithm to Automatic Test Pattern Generation

Research in Computing Science 123 (2016)ISSN 1870-4069



in other case x or ¬x must be in S.
Let (F4, S4) = UP (φ, S1) and (F5, S5) = UP (φ, S2). And let K1,K2 be the

2-CF’s forming F4 and F5, respectively. Our algorithm consists of the following steps:

1. If ((Nil ∈ F4 or (K ∪ K1) is unsatisfiable) and (Nil ∈ F5 or (K ∪ K2) is
unsatisfiable ) ) then (K ∧ φ) is unsatisfiable. Because any feasible assignment can
not be extended with value for the variable x without falsifying (K ∪ φ).

2. Else If (Nil ∈ F4 or (K ∪K1) is unsatisfiable) then T (x) can not be part of any
model of (K ∪ φ), then we can extend the base S as: S = S ∪ T (¬x).

3. Else If (Nil ∈ F5 or (K ∪K2) is unsatisfiable) then T (¬x) can not be part of any
model of (K ∪ φ), then we can extend the base S as: S = S ∪ T (x).

4. Otherwise, all new unitary clause, generated via UP, allows to update the transi-
tive closures. That is, ∀{l} generated by UP (φ, S1) or UP (φ, S2), we have that
T (x) = T (x) ∪ T (¬l), and T (l) = T (l) ∪ T (¬x). These four steps are iterated
until determine the satisfiability of (K ∧ φ).

Applying these last steps to our example, we have that UP (φ, T (D)) = φ[D] =
{{X,E}, {A,B}} so that φ is reduced from a 3CF to a 2CF. Afterwards, the tran-
sitive closures have to be updated. This step finishes until K is unsatisfiable, or φ
is empty (and then K ∪ φ is satisfiable), or UP (φ, S) does not generate new binary
or unitary clauses. Let us consider now that UP (φ, S) does not generate neither new
unitary nor binary clauses, then as second step in our procedure, we select a literal x ∈
((Lit(K)∩Lit(φ))−S) such that T (x) and T (¬x) are consistent and |T (x)|+|T (¬x)|
is maximum into the set of common literals of K and φ.

Again, considering our example, we have that the last closure system is: T (A) =
{A,B,D}, T (A) = {A,D} T (B) = {B,A,D}, T (B) = {B,D}
T (C) = {C,E,X,D,Z, Z ′}, T (C) = {C,E,X,Z ′, Z}
T (D) = {D,A,B,X,Z ′, Z,B,A} inconsistent
T (D) = {D} thus D is added to S
T (E) = {E,C,X,Z ′, Z}, T (E) = {E,C,X,D,Z, Z ′}
T (X) = {X,Z ′, Z,E,C}, T (X) = {X,D,E,Z,C, Z ′}
T (Z) = {Z,Z ′, X,E,C,D}, T (Z) = {Z,Z ′, X,E,C}
T (Z ′) = {Z ′, Z,X,E,C}, T (Z ′) = {Z ′, Z,X,E,C,D}

Note that in this case, the transitive closures obtained indicate thatD is added to the
base since an inconsistency was found for T (D). Therefore, K has various models that
satisfy φ. But, if we consider D as part of a model of K, all ternary clause contained in
φ is transformed into a binary clause, and the process is finished indicating that (K∧φ)
is satisfiable.

The great advantage of this method is that at least two thirds of the clauses generated
are binary clauses (the 2-CF). This is true because each two-input unate gate contributes
two binary clauses and one ternary clause. Unate gates with more than two inputs
contribute more than two thirds of binary clauses. Fanout points, buffers, and inverters
contribute with only binary clauses. In practice, applying this method, at most 80% to
90% of the clauses are binary clauses. Thus, our algorithm provides an efficient method
to solve this class of problems.
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6 Conclusions

We have designed a novel method for the incremental satisfiability (ISAT) problem.
Thus, we have shown different cases where the ISAT problem can be solved in polyno-
mial time.

Especially, considering an initial base K in 2-CF, we present an algorithm for
solving the 2-ISAT problem that allows us to determine the satisifiability for (K ∧ φ),
where φ is a 3-CF. Furthermore, we have established some tractable cases for the
2-ISAT problem.

We have illustrated the usefulness of our method in the area of automatic test
pattern generation (ATPG) systems that allows to distinguish defective components
from defect-free components in combinatorial circuits.
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